Europes billioneuro quantum flagship hands out first grants

first_imgQuantum computers made of superconducting circuits could be the first to outpace conventional computers. The first phase of Europe’s decadelong, billion-euro program to turn its quantum technology research into commercial products has come into focus. At an event held in Vienna on 29 October, the European Union announced the first €132 million of its quantum flagship initiative will be split between 20 continent-wide consortia over the next 3 years to develop new kinds of quantum sensors, communications, and computers.Backers hope the investment will keep Europe from being overtaken in a potent new area of technology. “It’s important to start an applications sector to allow industry to grow in Europe,” says Ian Walmsley, of the University of Oxford in the United Kingdom, and a member of the steering group that formulated the flagship. “No doubt it’s growing elsewhere in the world.” But it remains uncertain how the rest of the flagship will be paid for, and whether it will inject life into a fledgling European quantum industry.Physicists have begun to find commercial applications for the strange laws of quantum mechanics, which allow a subatomic particle to be in two states at the same time and a measurement on one particle to instantly affect another, distant particle. For example, Swiss company ID Quantique, set up in 2001, sells equipment exploiting the quantum properties of photons to create uncrackable encryptions for banks and governments. IBM Research/Flickr (CC BY-ND 2.0) Sign up for our daily newsletter Get more great content like this delivered right to you! Country Europe’s billion-euro quantum flagship hands out first grants Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwecenter_img By Edwin CartlidgeOct. 29, 2018 , 6:00 AM Email Basic research in quantum mechanics has flourished in Europe. But China is spending billions of dollars to commercialize quantum technology, including a satellite to send quantum-encrypted messages through space, launched in 2016—a first step toward a quantum internet. Meanwhile, the U.S. Congress is considering a $1.3 billion quantum initiative, and U.S. companies including Google, IBM, Intel, and Microsoft have already spent hundreds of millions of dollars to try to build a quantum computer that could outstrip conventional machines on certain tasks.Such investment has been scarce in Europe, where companies without the huge cash reserves of U.S. tech firms have been reluctant to take risks. The quantum flagship—the third EU flagship research program after ones on graphene and the human brain—is intended to compensate. Without such support, says flagship spokesperson Tommaso Calarco of the Jülich research center in Germany, “the ideas that were developed and are still being developed in Europe could be converted into companies and jobs elsewhere.”The program was announced in 2016, and grant proposals from 140 consortia—each a mixture of academics and industrialists—were received earlier this year, before being whittled down to the 20 winners across five categories. Seven of the winners will pursue basic science while many of the remaining consortia will develop commercial prototypes. Four winners are in the category of quantum communication and include a Dutch-led proposal to develop a blueprint for a quantum internet. Two more will plunge into the race for quantum supremacy, which means executing a specific algorithm that the best classical computers can’t handle.These groups might find themselves trailing Google, which aims to reach that milestone either later this year or early next using quantum bits, or qubits, made in superconducting circuits, says John Martinis, the company’s head of quantum hardware in Santa Barbara, California. Thomas Monz of the University of Innsbruck in Austria, who coordinates one of the European consortia, says his group’s bid for quantum supremacy, which uses trapped ions as qubits, is based on an algorithm that will be more “meaningful”—in other words, potentially useful—than Google’s.A full-scale quantum computer is decades off, however. Among the consortia developing more tangible quantum devices, Florian Schreck of the University of Amsterdam and colleagues are aiming to make a portable and easy-to-use optical clock that could help telecom companies end their dependence on potentially unreliable GPS signals. Meanwhile, Christoph Nebel of the Fraunhofer Institute for Applied Solid State Physics in Freiburg, Germany, and co-workers are working on a prototype room-temperature device to supply the spin-polarized molecules needed for magnetic resonance imaging machines.These grants amount to just a fraction of the initiative’s €1 billion commitment. Calarco says the format of the next funding round could combine calls for fresh proposals with continued support for existing projects. But where the money will come from is in question. Funding is supposed to be split 50-50 between the European Commission and member states. But unlike other flagships, the member state funding does not end up in a central pot. Instead, these funds are earmarked for national programs that merely share the aims of the quantum flagship. Given the complexity of this arrangement, Calarco is hoping the budget for the next EU research framework, to be decided next year, will contain all of the remaining €850 million needed for the quantum flagship. “I am working hard towards that goal,” he says.An additional uncertainty is how Brexit—the United Kingdom’s departure from the European Union in 2019—will affect the flagship. Brexit could remove a key funding source, although the United Kingdom could strike a deal like Switzerland, which pays to participate in EU research frameworks. But Brexit’s effects on grantees will be delayed: The U.K. groups within the 20 winning consortia will participate for the full 3-year initial period. “We don’t know what form Brexit will take,” Calarco says. “So we have 3 years to sort this out.” Click to view the privacy policy. Required fields are indicated by an asterisk (*)last_img